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Abstract

Sensor networks are an emerging class of systems with sig-
nificant potential. Recent work [14] has proposed a dis-
tributed data structure called DIM for efficient support of
multi-dimensional range queries in sensor networks. The
original DIM design works well with uniform data dis-
tributions. However, real world data distributions are of-
ten skewed. Skewed data distributions can result in stor-
age and traffic hotspots in the original DIM design. In this
paper, we present a novel distributed algorithm that alle-
viates hotspots in DIM caused by skewed data distribu-
tions. Our technique adjusts DIM’s locality-preserving hash
functions as the overall data distribution changes signifi-
cantly, a feature that is crucial to a distributed data structure
like DIM. We describe a distributed algorithm for adjust-
ing DIM’s locality-preserving hash functions that trade off
some locality for a more even data distribution, and so a
more even energy consumption, among nodes. We show, us-
ing extensive simulations, that hotspots can be reduced by a
factor of 4 or more with our scheme, with little overhead in-
curred for data migration and no penalty placed on over-
all energy consumption and average query costs. Finally,
we show preliminary results based on a real implementa-
tion of our mechanism on the Berkeley motes.

1. Introduction

Sensor networks have attracted a lot of attention because
of the unique challenges in this new, low-power, highly dis-
tributed computation regime. A typical sensor network con-
sists of tens or hundreds of autonomous, battery-powered
nodes that directly interact with the physical world and oper-
ate without human intervention for months at a time. The view
of the sensor network as a distributed database has been well-
accepted in the sensor network community with the develop-
ment and successful deployment of the pioneering sensor net-
work database systems such as TinyDB [15] and Cougar [3].
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Most of the previous work, however, has focused on power-
efficient in-network query processing. Very little attention has
been given to efficient and robust in-network storage for sen-
sor networks from the database community. A sensor network
as a whole can pool together a significant amount of storage,
even though each individual sensor node has only a limited
amount of storage (e.g., each Berkeley mote has 512KB data
flash). In-network data storage can be critical for certain appli-
cations where the sensor network is disconnected from a host
computer or where most of the sensor data are consumed in-
side the network.

Our previous work has proposed a solution for dis-
tributed data storage in sensor networks, called DIM [14].
With DIM, the sensor network field is recursively di-
vided into zones and each zone is assigned a single node
as its owner. In a similar way, DIM also recursively di-
vides the multi-dimensional data space (readings from mul-
tiple sensors) into non-overlapped hyper-rectangles and
then maps each hyper-rectangle to a unique zone. The way
that DIM partitions the multi-dimensional data space is
data locality-preserving, i.e., neighboring hyper-rectangles
in the data space are most likely mapped to neighbor-
ing zones geographically. The owner of a zone is the node re-
sponsible for storing data in the hyper-rectangle mapped
to the zone. This way, DIM builds a distributed data stor-
age with sensor network nodes and because the map-
ping is data locality-preserving, DIM can efficiently answer
multi-dimensional range queries issued to the sensor net-
work.

The original DIM design as described in [14] employs a
fixed data-space partitioning scheme regardless of data dis-
tributions. Therefore, when the sensor data is highly skewed
(as it is in some of today’s sensor network deployments (Sec-
tion 2.2), hotspots can result such that a small number of nodes
have to bear most of the storage and/or query load, and run out
of storage and/or deplete their energy much faster than the rest
of the network.

In this paper, we propose a novel distributed algorithm for
adjusting DIM’s data-space partitioning scheme based on data
distributions in order to adaptively rebalance the data storage
and avoid network hotspots. This algorithm collects and dis-
seminates approximate histograms of sensor data distributions
throughout the network. The histogram enables each node to
unilaterally and consistently compute the resized data-space
partitions without the need for a global commitment protocol
and without affecting the DIM zone layout. Then based on the
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updated data-space partition, data migrate from their old stor-
age site to the new ones if needed. We show, using extensive
simulations and a preliminary implementation on the Berkeley
motes, that with the rebalanced DIM, network hotspots can be
reduced by a factor of 4 or more, without sacrificing the over-
all energy consumption and average query costs (Section 4.2).
On the other hand, the overhead of data migration is relatively
small when data distributions change gradually, as observed
by our sensor network deployments.

Although there are some analogies between traditional
database indices and DIM, it is important to note the funda-
mental differences as discussed below:

• Most database indices are centralized while DIM must
be distributed (because of the energy constraints faced by
sensor networks) and each node must be able to make de-
cisions autonomously.

• Traditional indices optimize for the number of disk ac-
cesses while DIM optimizes for power consumption and
network longevity.

• Most traditional indices optimize for an OLTP workload
while DIM’s workload consists of streams of new sensor
data insertions and snapshot queries.

• Traditional indices perform rebalancing per insertion.
This is infeasible for DIM because the act of rebalanc-
ing involves data migration which can be very expensive.
We argue that in sensor networks it only makes sense to
perform the rebalancing when there is a global change in
the data distribution.

The rest of the paper is organized as follows. Section 2 dis-
cusses the details of DIM and motivates the need to rebalance
this structure. Section 3 details the rebalancing mechanisms
and explains how to preserve query semantics during the pro-
cess of rebalancing. Section 4 discusses the performance of
DIM rebalancing using simulations on synthetic and real data
sets. Section 5 describes our implementation on the Mica-2
mote platform. Section 6 discusses related work. We conclude
the paper in Section 7.

2. Background and Motivation

A typical node in sensor networks is equipped with multi-
ple sensors. For instance, on a single Crossbow MTS310 [5]
sensor board there are sensors for measuring light, tempera-
ture, acceleration, magnetic field, and sound. Thus, data gen-
erated at a sensor node is expressed as multi-attribute tuples.
Each tuple represents a snapshot that a sensor node takes of
its local view of the physical environment, e.g., light, temper-
ature, and humidity. Therefore, in a sensor database, the data
space of interest is usually multi-dimensional. DIM is a dis-
tributed data structure for efficiently answering range queries
to this multi-dimensional sensor data space, without flooding
the entire sensor network.

In this section, we briefly describe the DIM data structure,
the mechanisms of inserting and querying in this structure and
the semantics it provides. We then motivate the need for rebal-
ancing DIM with real-world examples.

2.1. DIM Overview

In DIM, data generated at sensor nodes are stored within the
sensor network. In typical scenarios, a sensor network is de-
ployed with a pre-defined task and then is left in the field to
periodically collect multi-attribute data according to the task
specification. Queries will then be injected, perhaps periodi-
cally, into the sensor network to retrieve data of interest. The
query results can be used as input to other applications such as
habitat monitoring, event-driven action triggering, and so on.
DIM is a distributed data structure designed for this type of ap-
plications and works as a primary index that guides the data in-
sertion and query resolution.

Given a network of sensor nodes deployed on a 2-D sur-
face1, DIM recursively divides the network field into spatially
disjoint zones such that each zone contains only one node. The
divisions (or “cuts”) are always parallel to either X-axis or Y -
axis and after each cut the resulting area is a half of the one be-
fore the division. Zones are named by binary zone codes. The
code follows from the cuts; on every cut, if the corresponding
coordinates of a zone2 is less than the dividing line, a 0-bit is
appended; otherwise, a 1-bit is appended. Given the bounding
box of the sensor field, nodes can easily compute their zones
and zone codes with a distributed algorithm [14]. An exam-
ple of DIM network with zones and zone codes is shown in
Figure 1.

In a similar way, DIM divides the data space into disjoint
hyper-rectangles and uniquely maps each hyper-rectangle to a
unique zone. Given the ranges of all dimensions of the data
space, a node associates each network cut with a cut in the
data space. As with the partitioning of the sensor field, the
data space partitioning is cyclically applied on each dimen-
sion, as shown in Figure 1. The hyper-rectangle and the zone
it is mapped to share the same code, i.e., all data in the same
hyper-rectangle have the same code and will be mapped to the
same zone. In most cases, neighboring zones are assigned with
neighboring hyper-rectangles in the data space and vice versa.
Therefore, DIM’s hashing from data space to network coordi-
nates is data locality-preserving.

Figure 1 shows a DIM example where the data space is
the set of (H:humidity, T :temperature, L:light) tuples, assum-
ing that 0 ≤ H < 100, 0 ≤ T < 50, and 0 ≤ L < 10. Node
5, for instance, is in zone [1100] and stores all (H,T, L)
where 50 ≤ H < 75, 25 ≤ T < 50, 0 ≤ L < 5. The data
locality-preserving hashing is reflected by the fact that geo-
graphically close nodes are assigned close hyper-rectangles in

1 DIM can be easily extended to 3-D space. For simplicity, we consider
only a 2-D surface in this paper.

2 The coordinates of a zone are the coordinates of its geographic centroid,
also called the address of the zone.
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Figure 1: A DIM network: circles represent sensor nodes.
Dashed lines show the network boundaries. This DIM is
built on three attributes: humidity (H), temperature (T ),
and light (L).

the data space, e.g., nodes 4 and node 5 disjointly share the
hyper-rectangle 50 ≤ H < 100, 25 ≤ T < 50, 0 ≤ L < 5.
The longer common prefix two codes have, the closer their
corresponding hyper-rectangles are in the data space.

Data is stored in the node that owns the zone the data
is mapped to. In DIM, the node storing data for a zone is
called the owner of the zone. For example, the owner of zone
[1101] in Figure 1 is node 4. Non-uniform deployments can
cause data to be mapped to a zone where no node exists i.e.,
an empty zone. An empty zone is assigned to the node whose
zone code is the lexicographically closest to the code of the
empty zone. For example, in Figure 1, if node 4 did not ex-
ist, the owner of zone [1101] would be node 5, since code
[1100] is the lexicographically closest to code [1101].

When a node sees a tuple, either generated locally or re-
ceived from its neighboring node, it computes the code of the
tuple using the hash function and derive the geographic coor-
dinates of the corresponding zone. It then invokes some geo-
graphic routing protocol to route the tuple to the coordinates
where the owner of the corresponding zone will be identified.
All tuples to be stored are timestamped.

DIM supports tuple insertion and deletion. Updates to
stored tuples are not allowed in DIM since tuples represent the
snapshots of the physical environment; in other words, DIM
preserves inserted data. Note that updates in themselves can
be implemented easily, since they are mechanistically similar
to insertion. When the storage at a node is full, data aging or
summarizing schemes can be invoked to reduce the storage re-
quirements (e.g., as in [8]). The specific aging or summariza-
tion policies used are application-dependent and beyond the
scope of the paper.

A multi-dimensional range query in DIM defines a hyper-
rectangle in the data space. The code for a range query is
the code of the smallest zone that encloses the corresponding
hyper-rectangle. For example, in Figure 1, consider a query
Q = 〈50 ≤ H < 100, 25 ≤ T < 50, ∗〉 whose code is

[11]3 and covers nodes 4, 5, and 6. If a range query covers
more than one node, it will be split into smaller sub-queries,
each covering fewer nodes. The splitting of a query is ex-
ecuted on the query routing path whenever a node finds its
zone covered by the query. Query splitting is always aligned
with the data space division. For example, if query Q arrives
at node 4 from node 3, it will be divided into three sub-queries
Q1 = 〈50 ≤ H < 100, 25 ≤ T < 50, 5 ≤ L < 10〉 with code
[111], Q2 = 〈50 ≤ H < 75, 25 ≤ T < 50, 0 ≤ L < 5〉
with code [1100], and Q3 = 〈75 ≤ H < 100, 25 ≤ T <
50, 0 ≤ L < 5〉 with code [1101]. Node 4 will then re-
solve sub-query Q3 and send out the other two sub-queries.

DIM supports two query semantics depending on the avail-
ability of a mechanism to synchronize clocks network-
wide [7]. In the absence of global time synchronization,
the response to a query at a node is defined by the snap-
shot of the data that are stored at the node when the query is
processed at that node. When all nodes’ clocks are synchro-
nized, queries can be time-stamped and a query will only re-
trieve tuples that are inserted before the time when the query
was issued (modulo synchronization errors, of course).

2.2. Data Skews and Rebalancing

As shown in Figure 1, The data space partitions in the orig-
inal DIM are, at each division, equal in size. This works well
if data are uniformly distributed across the data space. How-
ever, data distributions in real world deployments are usually
skewed as shown in Figures 2 and 3 (Detailed data analysis
will be given in Section 4).

Skewed data distributions create traffic hotspots in DIM: if
all data are stored at a small number of nodes, then the inser-
tion and query traffic at those and the nearby nodes can de-
plete the energy of those nodes much faster than that of the
other idle nodes.Thus, skewed data distributions can signifi-
cantly reduce the lifetime of a sensor network that is running
DIM. For this reason, DIM needs to have a mechanism that
will rebalance the storage workload, and it is this mechanism
that is the subject of the paper.

Classical database indices, either balanced such as B-
trees [1] and R-trees [11] or unbalanced such as Point
Quad Trees [6] and k-d trees [2], achieve rebalancing on
a per-insertion basis by invoking split or rotation opera-
tions. Split and rotation are relatively cheap for central-
ized indices since they just involve pointer manipulations
and/or buffer page copies. However, this per-insertion re-
balancing is too expensive for DIM in sensor networks
given the high cost of wireless communications. In par-
ticular, there are situations where a single insertion can
cause nearly every node to transfer data (this is analo-
gous to an insertion in centralized data structures triggering a
restructuring of the entire search tree). This feature is espe-

3 According to the definition of a zone, code [11] represents a valid zone
even though it is in fact divided into smaller zones as shown in Figure 1.



www.manaraa.com

 0  5  10  15  20  25  30  35  40  45  50
Temperature (C)  0

 20
 40

 60
 80

 100

Humidity (%)
 0

 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 100000

Light (Lux)

Figure 2: Forest data set collected in 15 consecutive days
from a forest deployment of 10 nodes.
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Figure 3: Office data set collected in 9 consecutive days
from an office deployment of 52 nodes.

cially undesirable for volatile data, e.g., short-term weather
changes caused by a brief rain shower, since all data move-
ments may need to be rolled back. For this reason, rather
than considering this approach, we chose to leverage two im-
portant domain-specific properties. First, unlike the central-
ized indices, the goal of rebalancing in sensor networks is to
reduce hotspots that cause node energy depletion. This im-
plies that continuously balanced structures are not practical
for performance. Second, we expect that the global data dis-
tributions in sensor networks are mostly skewed and change
slowly over time in most cases, as have been observed in
our real world deployments. Since it is the global data dis-
tributions that determine hotspots, this observation suggests
a low overhead way of re-balancing DIM, which we dis-
cuss in the next section. Of course, if the global data dis-
tribution is significantly volatile, our approach does not
work. However, as we show in this paper, local volatil-
ity in data does not de-stabilize our algorithm so long as
it does not change the global data distribution characteris-
tics.

3. Rebalancing DIM

DIM rebalances itself based on the global data distribu-
tions. In our implementation, these distributions are approx-
imated by histograms. Global histograms are constructed by
collecting and assembling the local histograms recorded at in-
dividual nodes. If a newly computed global histogram is sig-
nificantly different4 from the previous one, it is used to com-
pute a new hashing function, i.e., a new mapping from the data
space hyper-rectangles to zones. As we will see in section 3.2,
this re-mapping does not change the zones and zone codes;
it just re-partitions the data space and re-assigns the hyper-
rectangles to zones. Using the new hash function, a node can
decide which tuples in its local storage no longer belong to its
zone, and can route these tuples to their new storage sites (or
owners).

4 The thresholds for when two histograms can be said to be significantly
different are application dependent. We do not address this issue in detail
in this paper.

Figures 4 and 5 illustrate the data space partitions for the
DIM network shown in Figure 1, before and after rebalancing
based on the data distribution shown in Figure2. Compared
with Figure 4, notice that the data space partition in Figure 5,
i.e., the balanced DIM, reflects the data distribution.

Unlike the original DIM design that tightly coupled the data
space partitioning with the network geographic partitioning,
our rebalancing scheme essentially decouples the two. The
data space partitioning, or the DIM hash function, is entirely
defined by the data distribution histograms and adapts to the
global data distributions.

The cost of moving tuples from the old storage sites to the
new ones due to data-space re-mapping might be expensive.
However, our rebalancing design relies on a key observation
of sensor network data: the changes in the overall data dis-
tributions can be expected to be fairly small in many cases.
For example, in a habitat monitoring context, diurnal /noc-
turnal patterns can change the distribution, but those are on
the timescale of several hours. So, in such networks, we ex-
pect that the data migration cost can be amortized over queries
and inserts since rebalancing can be expected to happen infre-
quently (once a day or every few hours). In addition, it is pos-
sible to remove the cost of data migration completely by main-
taining multiple DIM overlays on a single sensor network. We
briefly discuss this in Section 3.4; the details of this technique
is not the focus of this paper.

In this section, we discuss histogram collection and dis-
semination, the algorithm for remapping the data space, and a
transition mechanism to ensure that queries are correctly exe-
cuted during the process.

3.1. Collecting and disseminating histograms

Most prior work on multi-dimensional histograms has fo-
cused on centralized computation techniques. Distributed con-
struction and/or computation of multi-dimensional histograms
is still an open area and beyond the scope of this paper. Here
we adopt a simplified multi-dimensional histogram scheme,
assuming that the bucket size is fixed based on a priori knowl-
edge about the data ranges. In Section 4 we show that fixed
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Figure 4: The 3-D data space (normalized) partition for the
DIM network shown in Figure 1.
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Figure 5: The 3-D data space partition of after rebalancing
based on the distribution shown in Figure 2.

bucket sizes work sufficiently well for highly skewed data dis-
tributions.

The fundamental histogram collection-dissemination pro-
cedure is as follows. Each node records its local histogram
which counts the number of tuples falling in each histogram
bucket. A node may decide to initiate histogram collection ei-
ther based on a timer or based on some heuristic (see below),
and broadcasts a histogram collection request. This request ef-
fectively constructs a tree rooted at the collector [16]. The lo-
cal histograms from all nodes are then delivered back to the
collector along the tree, aggregated at intermediate nodes. At
the collector, the local histograms are assembled to form a
global histogram. If the collector decides that the global his-
togram has changed from the old one beyond a configured
threshold to warrant a rebalancing, it will disseminate the new
global histogram to the entire network.

One approach to trigger histogram collection is by setting
a timer, e.g., once per day or once per hour depending on the
application and the knowledge about the global data distribu-
tions. This approach works well in the cases where there are
apparent cycles such as daily temperature readings in summer.
Alternatively, DIM rebalancing can also be triggered dynam-
ically by the most loaded nodes. The measure of load can be
one of the following: the number of tuples stored since the last
rebalancing, the number of transmissions and/or receptions
since the last rebalancing, or the combinations thereof. If a
node finds itself overloaded, i.e., beyond some threshold based
on the measures above, it broadcasts a histogram collection re-
quest. It is possible that more than one node might broadcast
the request at the same time.This conflict is resolved by se-
lecting the root based on some functions, e.g., node id. Other
nodes suppress their advertisements if they have received one.
We omit the details for lack of space.

Once the global histogram has been built up, heuristics
can be used for determining if a histogram dissemination is
needed, i.e., if the global data distribution has changed signifi-
cantly. We describe two energy-efficient heuristics. First, if the
buckets are fixed, certain threshold can be placed for monitor-
ing bucket height changes. Second, suppose that the longest
zone code is known, all the data space partition points can be

calculated and compared with the old ones to decide changes
beyond the configured threshold.

As with other multi-dimensional histogram schemes,
the cost to handle high-dimensional histograms is expen-
sive. Since we adopted fixed buckets, for a given dimensional-
ity, the cost to store and calculate histograms for rebalancing
is bounded. The most expensive part is histogram collec-
tion and dissemination as each of them will require Θ(N)
messages for a network of N nodes5.

3.2. Remapping from Data Space to Zones

To achieve rebalancing, each node uses the new histogram
to remap the data space to zones. The intuition behind our ap-
proach is to have each node redefine all its data space division
points such that after each division the amount of data stored
in each half is approximately the same.

Consider the 3-dimensional data space in Figure 2. Upon
receiving the new histogram disseminated by the histogram
collector, all nodes independently run the remapping algo-
rithm as follows. First, find a point h on the humidity dimen-
sion such that the number of (H,T, L) pairs with 0 ≤ H < h
is equal to that with h ≤ H < 1. If h is within some bucket, di-
vide that bucket into two halves and reduce the bucket height
accordingly (within each histogram bucket, we assume data
uniformly distributed). Point h is the first division point to the
entire data space. If the zone code of the node starts with 0,
then drop all buckets with h ≤ H < 1; otherwise, drop all
buckets with 0 ≤ H < h. Repeat the above operations on all
three dimensions alternately until the number of points com-
puted for all three dimensions equals the bit-length of the zone
code of the node. The resulting divisions comprise the new
hash function for the rebalanced DIM. Figures 4 and 5 illus-
trate the data space partitions before and after applying this
approach.

It is worth pointing out that the remapping does not change
the zones and zone codes which are decided by the network
physical topology. Unlike the original DIM design, after re-

5 The constant factor depends on the bucket size and the data ranges.
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REMAP()
1 Initialize rect
2 l← code.length
3 for i← 1 to l
4 do d← i mod DIMENSIONS
5 if histogram is empty

6 then new cut[i]←
rect[d].lower+rect[d].upper

2
7 else h← Number of tuples in all buckets/2
8 new cut[i]← Cut point to get h
9 Divide the bucket where h is located

10 Drop histograms out of rect

11 var ← |new cut[i]−old cut[i]|

rect[d].upper−rect[d].lower
12 if var < THRESHOLD
13 then new cut[i]← old cut[i]
14 if code[i] = 0
15 then rect[d].upper← new cut[i]
16 else rect[d].lower← new cut[i]

Figure 6: DIM rebalancing algorithm. rect is the hyper-
rectangle mapped to the zone indicated by code.
rect[d].lower and rect[d].upper represent the lower and up-
per bound of rect on dimension d, respectively. old cut and
new cut are the data space division points before and af-
ter rebalancing, respectively.

balancing, nodes will have different local views of the data
space partition, which in the original DIM was implicitly the
same for all nodes. For example, as shown in Figure 4, in the
original DIM, after the first division on the humidity dimen-
sion, the second division on the temperature dimension will
be the same for all nodes. In the rebalanced DIM, however,
this is no longer the case, as illustrated in Figure 5. Since the
two sets of data after the first division (on the humidity dimen-
sion) are distributed differently (see Figure 2), the second di-
vision (on the temperature dimension) for each half sub-space
is different from each other.

Nevertheless, a consistent global mapping is guaranteed by
the fact that the common code prefix always identifies the
same hyper-rectangle in the data space. In other words, the
length of the common code prefix of two nodes decides how
much common global view they share. This shared global
view guarantees the correctness of tuple insertion and query
processing in DIM.

The pseudo code of the median-based DIM rebalancing al-
gorithm is shown in Figure 6.

3.3. Handling DIM Transition

In the transition state, due to the change of the hash func-
tion, every node needs to check the data it has stored. If a tu-
ple is now mapped to a hyper-rectangle different from the one
the node currently owns, that tuple will be transferred to its
new owner. Also, during transition, new data may be gener-
ated or queries may be issued. A problem with transition is
that nodes in different areas may have different DIM versions,

because of histogram dissemination delay, assuming that his-
tograms are delivered via a reliable protocol.

In order to consistently deal with queries and insertions
during transition, we tag every DIM message with a version
number which records the latest DIM version number of all the
nodes this message has gone through. Upon receiving a mes-
sage m, a node, say A compares the version number v(m) of
m with its local DIM version number v(A). If v(A) > v(m),
i.e., node A has a more recent version than message m, node
A will update m by setting v(m)← v(A). On the other hand,
if v(A) < v(m), node A holds message m and send a version
request to the node, say B that is the previous hop of mes-
sage m6. Node B responds to the version request of node A
by sending its latest histogram h(B) to A, i.e., the histogram
dissemination is repeated from B to A locally. Upon receiv-
ing h(B), A replaces its latest local histogram with h(B) and
calls algorithm REMAP() as in Figure 6 to build a local remap-
ping from the data space to its zone.

3.3.1. Data Migration While a tuple is transferred from its
current storage site to the new one, that tuple is retained at the
original node until the transfer is complete. We do this for con-
sistency reasons, reclaiming the storage thereafter. Data mi-
gration needs to be rate limited in order to not congest the net-
work.

3.3.2. Query Processing To process queries consistently
during the transition, we need to consider two cases:

1. All nodes on the query path have not updated their DIM
versions, i.e., they stay in the DIM before rebalancing
(henceforth called the old DIM). In this case, the query
will be processed safely without knowing the existence
of the new DIM.

2. At least one node on the query path has started using the
DIM after rebalancing (henceforth called the new DIM).
In this case, the version request will be used to retrieve
the new DIM and the query will be delivered to the new
DIM storage sites, as has been described.

DIM’s query semantics requires that a query retrieve all qual-
ified data inserted before the query time, i.e., no matter which
path the query has gone along, it should obtain the same set of
responses. To satisfy these semantics, we introduced a PULL
protocol to the original DIM design.

When entering the new DIM, node A checks the changes to
the hyper-rectangles mapped to its zone and to all of the empty
zones it owns. If any of the hyper-rectangles has increased in
any of the dimensions, a PULL request is sent. The PULL re-
quest is merely a DIM query that covers the hyper-rectangle
in the old DIM. A node processes the PULL request in exactly
the same way as it would process a query, except that the ver-
sion number is locked to be that of the old DIM. If the node

6 We assume that the previous hop information is available in the underly-
ing network protocols.
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has tuples matching the query, it responds to the PULL re-
quest with a PULL reply. For each received PULL reply, the
requester adds the reply sender to its list, called pull set. The
pull set serves two purposes:

1. It converts the PULL request forwarding/receiving nodes
to the new DIM.

2. It associates the storage of the same data in the old DIM
and the new DIM.

Thereafter, whenever node A resolves a query, it forwards the
query to all nodes in its pull set to retrieve tuples stored there
if the pull set is not empty. If a PULL replier has no more
old data because it has completed the data transfer, it sends an
END-OF-TRANSFER message to the requester to remove it-
self from the pull set of the requester. When the pull set be-
comes empty, node A will no longer forward queries to the
old DIM since all data has been transferred to A.

3.4. Discussion

There are obvious trade-offs between the rebalancing per-
formance and the granularity of histogram buckets. Within
each bucket, tuples are assumed to be distributed uniformly.
Thus, a smaller bucket size might enable much better rebal-
ancing at the cost of energy in collecting and disseminating
larger histograms. Various histogram compaction techniques
can, of course, alleviate these problems: dropping empty buck-
ets, merging neighboring buckets, thresholding buckets in
skewed data distributions, etc.

The performance of DIM rebalancing is affected by several
factors. First, the frequency of DIM rebalancing affects DIM
performance as well as data migration costs. The scenario for
which our DIM rebalancing scheme performs best is a skewed
and slow-changing data distribution. In this case, DIM will
quickly converge to the right data space division and change
little after the first several rounds of rebalancing. In addition to
data distribution, queries also contribute to traffic hotspots. For
example, if the majority of queries are focused on a small area
in the data space, then the node storing data for that area will
become a hotspot. Query distributions, if available and con-
verged, can in principle be used in the same way as we have
used data distributions in order to avoid hotspots. However, it
is less obvious that the query workload for a sensor network
database will change slowly enough for our scheme to be ap-
plicable.

Second, the cost of data migration can be removed by keep-
ing temporal data-space partitions, i.e., multi-hash functions,
one for each rebalancing. Each hash function is timestamped
and tagged with a DIM version number. When issuing a query,
the query source node injects the query into the network mul-
tiple times once per hash function. Intuitively, we are build-
ing multiple DIM overlays on a single network. All the over-
lays share the same zones and zone codes and are different
by timestamps and version numbers. While saving the cost of
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Figure 7: Redraw of the humidity and temperature sensor
readings for the forest data set.

data migration, this scheme has its own expenditure. In addi-
tion to the extra storage needed at each node to maintain the
status of different hash functions, the overall query cost is mul-
tiplied by the number of overlays involved in this query, since
now each query needs to be injected multiple times.

Finally, our rebalancing scheme does not affect other as-
pects of the original DIM design such as the local replication
and the mirror replication.

4. Evaluation

In this section, we evaluate our rebalancing scheme with
real world data as well as data generated by our simulator. We
start with a study of data collected from real deployed sensor
networks. We then describe our metrics and simulation sce-
narios and present the results.

4.1. Data Analysis

As shown in Figures 2 and 3, we have analyzed two data
sets, forest and office. In the forest deployment, each of the
10 nodes collected sensor readings once per half an hour over
15 consecutive days. While the light readings are distributed
randomly, the other two readings — temperature and humid-
ity — are highly correlated and actually follow certain cycles
over time. To show this, Figure 7 replots the temporal vari-
ation of humidity and temperature. Two observations can be
drawn from our forest data set:

1. The overall data distribution is highly skewed. Most of
the humidity and temperature readings are in a small
range, e.g., temperature readings are mostly found in be-
tween 20◦C and 40◦C.

2. There is a common pattern of daily cycle, esp. for hu-
midity and temperature; except for a couple of days, the
same pattern was repeated with a little variation every 24
hours.

The office data set was obtained from a network of 52 nodes
deployed in a large office over 9 consecutive days. A tuple
(temperature, humidity, light) was retrieved from each node
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Figure 8: The standard deviation of storage usage when
network size is 100 with the small bucket size.
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Figure 9: Comparison of the “hottest” nodes when query
sizes are fixed.

once per half an hour on average. As shown in Figure 3, the
office data set is also highly skewed. Unlike the forest data
set, however, the light readings are more volatile at some lo-
cations in the office due to human activity.

As we can see, skewed distributions with relatively small
volatile changes are the common feature of both the data sets.
Later in this section we will show how DIM performs on them.

4.2. Metrics and Simulation Framework

We evaluated our DIM rebalancing approach using ns-2 (a
network simulator) and compared it to the original DIM using
the following four metrics:

1. Standard deviation of storage load measures the effi-
cacy of rebalancing.

2. Traffic hotspot measures the number of messages trans-
mitted by the “hottest” nodes and is a coarse indicator of
network lifetime.

3. Rebalancing overhead measures the amount of data tu-
ples transferred by each DIM rebalancing.

4. Average query cost measures the average number of
transmissions per query (not including reply messages).

ns-2 is an event-driven network simulator that pro-
vides a wireless network simulation environment with
user-configurable parameters. In our simulation, we used
dense networks with size from 50 nodes up to 200 nodes uni-
formly placed in square areas. The radio range is set to 40m
and the node density is set to be 1 node per 250m2.

The data we generated for simulations were drawn from a
3-dimensional data space. We used tri-variate Gaussian distri-
butions with the means oscillating within a small interval, 0.1
times the data range on each dimension, and the standard de-
viations 0.3 times the data range on each dimension. Note that
the reason we chose the tri-variate Gaussian distributions is to
generate skewed data. Our approach does not require the mul-
tiple dimensions to be correlated and merely attempts to miti-
gate hotspots arising from skewed distributions.

All nodes inserted the same amount of data with the same
frequencies. In our simulation the ratio of insertions to queries
is 2. We used two different query size distributions — expo-
nential where “large” queries are relatively rare and fixed sized
where all queries have the same size. The average for both
query size distributions is the same — 10% of the range on
each dimension. Queries were uniformly randomly placed in
the 3-d data space. In our simulation, query sources were ran-
domly chosen among all nodes and on average, each node is-
sued the same amount of queries. The histogram buckets we
used are cubical in the data space, i.e., they have the same
edge size on each dimension. We used two different bucket
sizes for histograms: large size, i.e., 1

8 on each dimension and
small size, i.e., 1

32 on each dimension.

4.3. Results

First we examined the standard deviation of storage usage.
The result is shown in Figure 8 where DIM rebalances itself
once per epoch for a total of 20 epochs. In each epoch, 1000 tu-
ples were inserted. The tuples used in each epoch were drawn
from a distribution whose mean differs slightly from the mean
used in the previous epoch. Clearly, with rebalancing, nodes
were able to share the storage load more evenly among them
and the standard deviation increases with the same order of av-
erage increase. At the end of the last epoch, the standard de-
viation of storage usage without rebalancing is nearly 7 times
that of the rebalanced DIM. Similar results were also shown
by other network sizes we have used.

Of greater interest to us is the network hotspot, the metric
that indicates network lifetime. With a balanced storage load,
we expect that the rebalanced DIM networks will reduce their
hotspots significantly since insertion and query reply traffic
will be better distributed across nodes. Our experiments point
out the rather dramatic impact of rebalancing.

Figure 9 illustrates the top 10% “hottest” nodes for net-
works of different sizes, 20 epochs in time, and with fixed
query sizes. As can be seen, in 50-node networks the “hottest”
node of the original DIM sent 4 times as many messages as the
“hottest” node of the rebalanced DIM. This difference tends
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Figure 10: The overall energy consumption when query
sizes are distributed exponentially.
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Figure 11: Comparison of the “hottest” nodes under dif-
ferent bucket sizes in a network of 200 nodes.

to increase as the network size increases since the total num-
ber of insertions and queries has increased. When the network
has 200 nodes, the ratio is nearly 8. Similar results also hold
when query sizes follow the exponential distribution. Related
to hotspots is the overall energy consumption measure that is
shown in Figure 10 where we can see that the overall energy
consumption of the rebalanced DIM, including the cost of his-
togram collection and dissemination and that of data migra-
tion, is comparable to the original one.

The resolution of histograms also affects the net-
work hotspots. Intuitively, large bucket sizes, i.e., coarser
resolutions, will make DIM node storage load less bal-
anced than small bucket sizes, i.e., finer resolutions. Figure 11
shows the impact of bucket size on the DIM rebalancing per-
formance in networks of 200 nodes. Clearly, large buck-
ets move the hotspots towards the original DIM, e.g., when
the bucket size equals to the entire data space, the re-
balanced DIM will degrade to the original DIM. How-
ever, as one can see, even with large bucket as we used
here, the “hottest nodes” in the rebalanced DIM trans-
mitted 4 times fewer messages than the original DIM. In
Figure 11, we can also see the comparable average en-
ergy consumption among the the three cases, which is at the
node ranking 100th.
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Figure 12: Data migration overhead of rebalancing a DIM
network with 100 nodes and 20 epochs.
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Figure 13: Average query cost comparison. The query
sizes follow the exponential distribution.

The data migration overhead measurement is shown in Fig-
ure 12 where the curve represents the amount of tuples trans-
ferred upon each rebalancing over a total of 20 epochs when
network size is 100. As we have claimed, the rebalancing over-
head will be amortized over time when the global data distri-
bution is stable (as our real-world data sets show, they indeed
are).

Finally, we show in Figure 13 that the average query cost,
i.e., the average number of transmissions per query, will not
be affected by rebalancing. This is encouraging; to some ex-
tent rebalancing might be expected to reduce data locality, but
this figure shows that the effect of this reduction is insignifi-
cant, given that queries are randomly placed in the data space;
otherwise, query distributions can also be taken to build his-
tograms as discussed in Section 3.4.

4.4. Results from Real-World Data Set

We also tested our rebalancing scheme by conducting trace-
driven simulations on the two real world data sets (Section
4.1) with the same query distributions and bucket sizes. For
the forest data set, we used a network of 10 nodes, the same
size as the deployment. Every day, each node generates 480 tu-
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Figure 14: Hotspots measured with the forest data set
shown in Figures 2.
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Figure 15: Data migration overhead of the forest data set
shown in Figures 2.

ples as explained in Section 4.1. Rebalancing is scheduled at
the end of each day due to the apparent data cycles.

Figure 14 compares the hotspots of the original DIM with
the rebalanced DIM under exponential query size distributions
and the small bucket size. What is more interesting is Fig-
ure 15. Referring to Figure 7, we can see that our rebalancing
scheme can tolerate short-term (1-2 days in this case) data dis-
tribution changes. Note that the data migration spike on 8/23
was triggered by the accumulated histogram changes7. The
climate changes that occurred on 8/24 and 8/25 did not trig-
ger data migration bursts since they did not significantly im-
pact the global data distribution. One can expect that if the
climate change was long-lasting, e.g., season alternation, then
they would finally affect the global data distribution and be re-
flected via DIM’s data space partitions. This result is encour-
aging since it shows that our rebalancing scheme can converge
to the global data distribution while being stable in the face of
local volatility.

Similar results were also observed with the office data set.
Again, we used a 52-node network, the same size as the de-

7 As stated before, the histogram change is decided with the comparison
threshold. We leave the further exploration of finding appropriate thresh-
olds to the future work.
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Figure 17: Data migration overhead of the office data set
shown in Figures 3.

ployment, and scheduled DIM to rebalance once a day due
to the apparent daily cycles. Figure 16 illustrates the node
hotspots with and without rebalancing when the query sizes
were exponentially distributed. Figure 17 shows the data mi-
gration overhead for each rebalancing.

5. Implementation

We have implemented DIM and our rebalancing scheme
on the Berkeley motes. The software architecture of DIM on
TinyOS [12] is shown in Figure 18. The rebalancing func-
tionality is implemented in the core DIM components (mainly
in the Zone module) as well as in the dispatcher. The code
size on the motes is over 3000 line NesC [9] code. We also
implemented a Java GUI that provides a DIM front-end on
PC’s. The GUI allows users to create DIM, set sensor sam-
pling rates, check node status, issue queries, and initiate re-
balancing (in our current implementation rebalancing is user-
triggered for simplicity). The mote connected with user’s PC
functions as the histogram collector.

Figure 19 shows the results of our experiments with a net-
work of 10 MICA2 motes in an indoor deployment. The maxi-
mum path length between any pair of nodes is 3 hops. We col-
lected light and temperature readings from each node, i.e., the



www.manaraa.com

Figure 18: The software architecture of DIM as imple-
mented on Berkeley Motes.
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Figure 19: MICA2 mote experiment scenario with the stor-
age usage before and after one rebalancing.

data space is 2-dimensional. The total number of tuples gen-
erated is 100, 10 from each node and no query was issued.In
Figure 19, the label adjacent to each node indicates its storage
usage. The first number shows storage at each node without
rebalancing. Clearly, the distribution of (light, temperature)
pairs is skewed with 88 tuples stored in a single node. The
second number is the storage usage after a single rebalanc-
ing with the bucket size of 1/10 span on each dimension. The
standard deviations of the storage usage are 26.1687 for the
original DIM and 12.6174 for the rebalanced one. In our ex-
periment, due to the skewed data distribution, each histogram
needs only one TinyOS message. In general, smaller bucket
size involves more traffic; half the bucket size can double the
amount of histogram messages in the worst case.

6. Related Work

Existing sensor network database systems (e.g., Cougar [3]
and TinyDB [15]) tend to focus on processing queries inside
a sensor network with query results delivered to a host com-
puter outside the network. The default mode of operation is
for a user from the host computer to issue a query which
gets flooded throughout the sensor network. Query operators
(e.g., sampling, selection, aggregation, etc.) are evaluated on
all the nodes inside the network and eventually, query results
are streamed back to the host computer outside the network.
[15] has proposed extensions to this default mode of opera-
tion with per-node data buffers for storing local query results
as well as a notion of a semantic routing tree (SRT) which pro-
vides heuristics for limiting the scope of query dissemination
based query predicates.

In contrast, DIM extends sensor network databases with
a different mode of operation where sensor nodes can au-
tonomously generatetuples and store them within the network
while queries can be issued from any node in the network over
the data that have been generated so far. The availability of a
host computer is not required. The location where a data tu-
ple is stored is defined by a locality-preserving hash function
that maps the multidimensional data space to physical network

space. With DIM’s hash function, queries do not need to be
flooded throughout the network but can be routed precisely to
the nodes that are responsible for storing the data within the
query range.

Other data storage schemes in sensor networks have been
proposed with different goals in mind: GHT [24] supports
exact match queries (note that this is a special case of the
multi-dimensional range queries supported by DIM), DIMEN-
SIONS [8] efficiently provides spatio-temporal aggregates,
and DIFS [10] provides efficient range querying on a single
attribute.

DIM’s design draws inspiration from decades of database
research. Partitioning data spaces in order to facilitate queries
have long been adopted in database indices such as B-trees [1],
R-trees [11], and k-d trees [2], and their variants. Furthermore,
index rebalancing has long been a concern of this line of re-
search. Section 1 already discussed the differences between
DIM’s approach to rebalancing, and that adopted by tradi-
tional database indices.

Our rebalancing scheme as presented in this paper makes
use of histograms to estimate skewed data distribution by
counting the number of tuples falling into each bucket. Sim-
ilar applications of histograms have long been studied by the
database community, mainly for query optimization [19, 13,
20, 21]. The research on multi-dimensional histograms has
proposed various approaches [17, 22, 18, 4, 25, 26, 23]. The
application of them in a distributed context like the sensor net-
work is open for further research.

7. Conclusion

In this paper, we have described a novel re-balancing tech-
nique for DIM, a distributed indexing and storage structure in
sensor networks. Our rebalancing technique reduces network
hotspots by a factor of 4 or more for skewed data distribu-
tions. Such skewed distributions are common in the real-world
sensor network deployments we have analyzed. Our proof-of-
concept implementation clearly indicates the feasibility of im-
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plementing these mechanisms even on impoverished devices
like the Berkeley motes.

Of course, the ultimate viability of these mechanisms (and
of DIM itself), will be judged by successful deployments in
real world scenarios. Towards this end, we intend to try de-
ploying DIM in a real deployment very soon. Longer-term,
we need to find viable mechanisms that will alleviate query
hotspots; a promising approach in this direction is caching,
which we intend to explore.
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